Автор: Administrator   
06.04.2012 14:32

Физико-механические свойства металлов и сплавов металлов

Металлы имеют различные цветовые оттенки почти всего спектра, однако, как правило, для недрагоценных металлов это серый, голубоватый, синеватый различной степени выраженности и разных комбинаций. Для драгоценных металлов характерны желто-оранжевая гамма и белесовато-серебристый оттенок, эти вещества обладают достаточно высокой плотностью (см. табл. 20). Так, плотность золотосодержащих сплавов составляет 14 -18 г/см3, плотность кобальтохромовых сплавов (см. табл. 39-40) равна 8,4 г/см3, плотность никелехромовых сплавов (см. табл. 37) — 8,2 г/см3. Как уже указывалось, они теплопроводны и электропроводны, а также расширяются и сжимаются соответственно при нагревании и охлаждении.

 

Физко-механические свойства некоторых металлов

 

Характеристика кобальтохромовых, хромоникелевых сплавов

 

Характеристика кобальтохромовых, хромоникелевых сплавов

Температура плавления у металлов (см. табл. 20) широко варьируется. В связи с этим выделяют легкоплавкие металлы с температурой плавления ниже, чем у чистого олова (232° С), а также тугоплавкие металлы, температура плавления которых выше, чем у железа (1535° С). Между этими полюсами расположены средние температуры плавления, свойственные большинству металлов и сплавов. Температура плавления и температура затвердевания чистых металлов всегда постоянны, и, пока не исчезнет одна фаза — расплавление твердой части при нагревании или затвердевание жидкой части при охлаждении,— температура остается неизменной.

Пластическая деформация приводит к изменению физических свойств металла, а именно:
— повышению электросопротивления;
— уменьшению плотности;
— изменению магнитных свойств.

Все внутренние изменения, которые происходят при пластической деформации, вызывают упрочнение металла. Прочностные характеристики (временное сопротивление, предел текучести, твердость) повышаются, а пластические — снижаются.

? Упрочнение металла под действием пластической деформации называют наклепом.

Нагартованные (имеющие наклеп) металлы более склонны к коррозионному разрушению при эксплуатации. Для полного снятия наклепа металлы подвергаются рекристаллизационному отжигу.

? Рекристаллизация — это процесс возникновения и роста новых не-деформированных кристаллических зерен поликристалла за счет других зерен.

Рекристаллизацию применяют на практике для придания материалу наибольшей пластичности. Причем она протекает особенно интенсивно в пластически деформированных материалах при более высоких температурах. Температура рекристаллизации имеет важное практическое значение. Чтобы восстановить структуру и свойства наклепанного (на-гартованного) металла (например, при продолжении штамповки коронки под прессом после наколачивания гильзы на мелотовой модели), его надо нагреть выше температуры рекристаллизации.

? Совокупность свойств, характеризующих сопротивление металла и сплава действию приложенных к нему внешних механических сил (нагрузок), принято называть механическими свойствами.

Силы могут быть приложены в виде нагрузки:

— статической (плавно возрастающей);

— динамической (возрастающей резко и с большой скоростью);

— повторно-переменной (многократно прикладываемой, изменяющейся по величине и направлению).

Соответственно этому механические испытания разделяютна:

— статические (растяжение, сжатие, изгиб, кручение, твердость);

— динамические (ударный изгиб);

— усталостные (при повторно-переменном приложении нагрузки);

— высокотемпературные (например, на длительную прочность).

Как правило, все испытания проводят в определенных условиях на образцах заданной формы и размера, т. е. по международным и принятым в данной стране стандартам, что обеспечивает сопоставимость полученных результатов и правильную их интерпретацию.

При растяжении или сжатии образец обладает способностью сопротивляться упругим деформациям, что определяет жесткость материала — модуль упругости Е. Размерность модуля упругости Е в системе СИ — Паскаль (Па, Н/м2) или Мегапаскаль (МПа, Н/мм2). Предел упругости указывается следующим образом — ?0,05. В таблицах 22 и 23 представлена теоретическая и реальная прочность некоторых материалов.

 

Теоретическая и реальная прочность некоторых материалов

Для металлов характерна высокая прочность (см. табл. 20, 21). При этом одни из них могут быть пластичными или упругими (пружинящими), другие, наоборот, хрупкими. Предельная прочность золотых сплавов ниже прочности литых кобальтохромовых сплавов (см. табл. 41). Высокая прочность затрудняет отделку конструкции протеза, но противостоит повреждениям при его эксплуатации (в первую очередь истиранию).

 

Физико-механические свойства нержавеющей стали

 

Таблица технических характеричтик сплавов

Из всех механических испытаний твердость определяется чаще всего, так как метод прост в применении.

Основными методами определения твердости являются методы внедрения в поверхность испытываемого металла стандартных наконечников из твердых недефор-мирующихся материалов под действием статических нагрузок:

  • метод Бринелля (вдавливание стального шарика определенного диаметра);
  • метод Роквелла (вдавливание алмазного конуса или стального закаленного шарика диаметром 1,58 мм);
  • метод Виккерса (вдавливание четырехгранной алмазной пирамиды с квадратным основанием).

Показателем твердости по Бринеллю является число твердости, обозначаемое НВ (Н — Hardness, англ.— твердость, В — инициал фамилии автора метода — Brinell). Методом Бринелля можно испытывать материалы с твердостью не более НВ 450. Твердость по Бринеллю выражается в кгс/мм. Если нагрузка выражена в ньютонах (Н), то число твердости по Бринеллю выражается в МПа. При этом размерность записывается так: НВ 320 МПа. Показатель твердости по Бринеллю наглядно продемонстрирован для разных металлов в таблицах 20, 21.

Твердость по Роквеллу обозначают HRA, HRB, HRC (в зависимости от применяемой шкалы А, В или С).

Твердость по Виккерсу (HV) имеет такую же размерность, как числа твердости по Бринеллю, т. е. МПа или кгс/мм2. Числа твердости по Виккерсу и Бринеллю для материалов с твердостью до HV 400-450 фактически совпадают (см. табл. 41). Твердость как характеристика сплава тесно связана с другими его параметрами. Так, например, по мере повышения твердости сплавов золота предел текучести и прочность на растяжение также увеличиваются, а при повышении твердости и прочности удлинение снижается. Микротвердость сплава металлов (рис. 10) можно изменять в процессе литья воздействием на него электромагнитного поля различной частоты, что позволяет получить сплав с заданными свойствами [Бобров А. П., 2001].

В результате циклических напряжений металл «устает», прочность его снижается (см. табл. 26), и наступает разрушение образца (протеза). Такое явление называют усталостью, а сопротивление усталости — выносливостью. Разрушение от усталости происходит всегда внезапно вследствие накопления металлом необратимых изменений, которые приводят к возникновению микроскопических трещин — трещин усталости, возникающих в поверхностных зонах образца. При этом чем больше на поверхности царапин, выбоин и других дефектов, вызывающих концентрацию напряжения, тем быстрее образуются трещины усталости.


Следующие материалы:
Предыдущие материалы:

Обновлено 06.04.2012 15:01
 
Интересная статья? Поделись ей с другими:

Добавить комментарий


Защитный код
Обновить

© 2011-2014 Хороший стоматологический портал. Все права защищены. При копировании текста ссылка на сайт обязательна.